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Teacher notes 

Topic E 

 

Heisenberg’s pencil. 

Suppose we want to balance a pencil vertically on a horizontal surface. Heisenberg’s uncertainty 

principle says that there will always be an uncertainty in the angle to the vertical (so the pencil will fall) 

and there will be an uncertainty in the angular speed of the pencil so again it will fall. So, what does 

Physics say about the maximum possible time for which we can keep the pencil almost vertical? 

 

 

The torque provided by the weight about the point where the pencil touches the ground is sin
2

L
mg   

and so sin
2

L
mg I = . The moment of inertia is 21

3
mL  and so 

3
sin

2

g

L
 =  or 

2

2

3
sin

2

d g

dt L


= . 

 

Assume that   is small so that sin  , then 
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where 
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The initial conditions are: 0(0) =  and 0

(0)d

dt


= . We are assuming that no hard how you try there 

will always be an uncertainty in the value of  making it non-zero and similarly, you can never avoid 

giving the pencil some initial angular speed. In either case, i.e. 0 0   or 0 0  , the pencil will topple 

over and fall to the ground. 

Implementing the initial conditions, we find 
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The negative exponential will become negligible quickly and we may ignore it. Then 0 0
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Heisenberg’s uncertainty relation for angular momentum says that 
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We want to balance the pencil, in other words we want to keep ( )t  small for as long as possible. So, we 

want to find the value of 0  that minimizes 0 0( )  + . We take the derivative of the bracket to get 
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We may estimate that the limit of what small angle means is about 
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Putting in typical numbers, m = 10 g, L = 10 cm we get 591
0.12 ln(4.9 10 ) 4 s

4
t      . No matter how 

hard we try we will never get to balance the pencil for more than 4 s! 

Quantum physics limits the time to just 4 s, down from an infinite time that would be expected from 

classical physics alone. 

Obviously, this is a very rough estimate. We used the approximation sin   throughout which is only 

valid when the angle is very small.  

It is quite extraordinary that a quantum mechanical principle manifests itself in this macroscopic 

situation. In principle, one could use this to estimate Planck’s constant: you try to balance the pencil and 

time its fall. This will give an estimate of the logarithmic factor and hence Planck’s constant. But you 

need some sort of machine that will position the pencil as vertically as possible, something that cannot 

be done by hand. 

 

 

 

 

 


